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Abstract -- Mobile applications are required to 
operate in ubiquitous environments of dynamic nature. 
Specifically, the availability of resources and services 
may vary significantly during a typical session of system 
operation. As a consequence, mobile applications need 
to be capable of adapting to these changes to ensure the 
best possible level of service to the user. Therefore, such 
adaptive applications may have pre-evaluated the 
appropriate knowledge of their environment to act 
efficiently. Such knowledge is not known a priori, so 
information prediction and proactivity should enhance 
and extend the functionality of such applications in 
order to be adaptable to the future changes of their 
underlying computational environment. In this paper, 
we discuss and evaluate such a context prediction 
algorithm.            

 
Index Terms – Context awareness, Context prediction, 
Context model, Spatial prediction, Context proactivity.  

 
I. INTRODUCTION 

 
In contemporary mobile environments, we 

encounter enormous computational complexity in 
contextual information modelling. The retrieval of 
such information will depend on spatial variants, 
time, history of interaction, and a range of factors that 
are not provided explicitly, but do exist implicitly in 
the ambient environment. Such information is 
collectively referred to as context. Context awareness 
allows an entity to adapt to its environment, which 
offers a number of advantages and possibilities for 
new applications. One of the more intuitive 
advantages is ease of use; if devices can adapt to their 
situation, they can engage in more efficient user 
interaction and proactivity. Other advantages may be 
less obvious, but context awareness can also lead to 
reduced energy consumption and, thus, to longer 
battery life of mobile devices. Another option for 
improving the usability of such entities is to make 
them proactive: anticipating user action enables a 
new class of applications to be developed. Moreover, 
spatial prediction can be used to improve 
performance for resource reservation in wireless 
networks and facilitates the possibility of providing 
desired spatial-oriented services by preparing and 

feeding them with the appropriate contextual 
information in advance. Predicted context-aware 
applications can address context pre-evaluation 
aspects introducing innovative proactive services, 
such as alerts related to traffic conditions or 
occurrences of accidents. Some publications [13,14] 
already covered the topic of location prediction for 
different granularities of location information. The 
concept of predicting the whole context on the level 
of abstract contextual identifiers with on-line 
algorithms with mechanisms incorporated in the 
mobile device, as discussed in this paper, is novel. 
This concept can be seen as a special case of context 
awareness, which considers the past, present or future 
context of an entity. 

As defined in [2], context aware applications could 
implement query interfaces that pertain to past, 
current or future (predicted) knowledge. Prediction 
allows applications to consume more time in the 
preparation and presentation of services, especially 
those involving complex and time-consuming tasks 
(e.g., mobile e-commerce) and to ensure that only 
desired services are delivered to end users. Moreover, 
it is highly significant that context can be pre-
evaluated and provided to consumers in a transparent 
manner. Context can be used effectively to constrain 
retrieval of information thereby reducing the 
complexity of the retrieval process. Thus, it is 
imperative that a context predictive model is 
introduced. Such a model should be compliant to a 
generic context, providing a level of abstraction 
among heterogeneous data models. Several data 
models for moving objects [3] have been proposed in 
the literature along with discussions on how to solve 
issues associated with point location management. In 
this paper, a profile for a predictive data model, 
namely a Predictive Context Object (PCO), is 
proposed. The PCO utilizes specially adapted 
interpolation formulae with efficient computational 
complexity. The PCO is implemented focusing on 
spatial context, which is considered as the basic 
contextual information in mobile ubiquitous 
environments.  



Our objective is not only to recognize the current 
context of an entity, but also to predict the future 
context and, thus, enable proactivity of the entity. 
Mobile wireless networks are emerging rapidly as a 
key technology of the information infrastructure. The 
proactivity of a service is based on the principle of 
determining the appropriate contextual information 
ahead of time. By inheriting a predictive context 
model, the functionality of mobile computing 
environments is enhanced. The PCO provides a 
model for spatial information (i.e., Global Positioning 
System data) and utilizes Cubic Bezier Splines as a 
value prediction /estimation scheme. Context 
capturing and prediction should be embedded in 
information appliances with limited resources. This 
limits significantly the set of applicable algorithms. It 
should be pointed out that our model does not 
perform any kind of probability-based and/or 
statistical estimation to calculate predictions. On the 
contrary, it is based on the assumption that certain 
amount of error will infiltrate to its calculations. 
Bearing that in mind, our concerns should be in the 
direction of choosing efficient prediction algorithms 
[1] and applying them to suitable contexts. In this 
paper, the proposed PCO is modelled in UML 
defining semantics of constraints. Focusing on spatial 
context, several simulation results are presented in 
order for the PCO to be evaluated against different 
factors of the prediction algorithm, such as 
knowledge depth (i.e., history window length of 
data), predicted future depth (i.e., future window 
length of prediction). We also introduce an important 
extension mechanism of this context model, which 
enables us to predict contextual information that is 
not available beforehand, by means of contextual 
inference. 

The rest of this article is structured as follows: In 
section II we briefly depict our concept model (PCO) 
using the Unified Modelling Language (UML) and 
represent it through a mathematical formula. In 
section III we implement the PCO to evaluate the 
different parameters of the prediction algorithm 
(knowledge depth, predicted future depth). The 
results are then presented and analysed. In section IV 
we refer to an extension mechanism of the PCO and 
how to express its semantics with a certain ontology 
language. Finally, conclusions and directions for 
further work in the area are provided. 

II. PREDICTIVE CONTEXT OBJECT  
A.   UML Profile for PCO 
 

Our concept of context prediction is based on how 
to define data models with parameters that hold the 
contextual information. The word “context” is 

defined as the interrelated conditions in which 
something exists or occurs in Merriam-Webster’s 
Collegiate Dictionary [4]. While this is a general 
definition, it does not help much in understanding the 
concept in a ubiquitous environment. Usage of the 
word context tends to be rather vague because 
everything in the world happens in a certain context. 
We need to focus on the context used by applications 
in mobile computing. Schilit in [5] divides context 
into three categories, the Computing context (e.g. 
network connectivity, communication costs, 
communication bandwidth, nearby resources such as 
printers, displays), User context (e.g. user’s profile, 
preferences, location, even current social situation) 
and Physical context (e.g. lightning, noise levels, 
traffic conditions, temperature). Time is also an 
important and natural context for many applications. 
Since it is hard to fit into any of the above three kinds 
of context we propose to add a fourth context 
category as: Derivable context, such as every 
physical (time) or conceptual (activity) parameter 
whose value may be independent of any context of 
the aforementioned categories. We can introduce the 
notion of the Predictive context as a special kind of 
Derivable context, when the Computing, User and 
Physical contexts are recorded across a certain time 
interval. Such context specifies the predicted values 
of every kind of context.  

Furthermore, we can define the context more 
accurately as the set of environmental states that 
either determines an application’s behaviour or in 
which an application event occurs.  

 We try to model the Predictive Context Object 
conforming to a specific profile [15] expressed in 
UML [6]. We define the classifier Observable as the 
variable of interest (e.g. Longitude, Temperature, and 
Bandwidth) related to a set of Entities (e.g. Human, 
Terminal). The Observable could belong to any kind 
of the aforementioned contexts. It implicitly 
maintains specific knowledge concerning its 
environment. Every entity is implicitly bound to a set 
of Observables in order to support context awareness. 
We introduce the classifier Ichnos that describes the 
current behaviour and status of an entity. The Ichnos 
classifier is the context model for the related entity. 
The main topic of this paper focuses on specific 
prediction mechanisms, which attempt to predict the 
behaviours of entities depending on past knowledge, 
as it is maintained into Ichnos. The Ichnos could be a 
member of the Predictive context. The profile of such 
prediction mechanisms incorporates a constraint-
based classifier, called Derivable. The Derivable 
associates to an Observable and specifies, through 
prediction algorithms, the Observable’s range of 
values (e.g., The Derivable time specifies the future 
values of the Observable Longitude). In Fig. 1 we 



illustrate a UML meta-model related to Predictive 
Context Objects for a set of well-defined entities of 
interest.  

In this model, the class Entity is the object whose 
context should be monitored. An Entity is explicitly 
bound to a set of Ichne determining the current 
contextual information. The Entity is semantically 
interrelated with another Entity through the meta-
association relatesWith. Such meta-association 
defines that an entity is related to another entity 
regarding their current context. Currently two entities 
are related if there exists a semantic function (e.g. a 
nearTo relation expressing the Euclidian distance) 
between their Ichne classifiers. We designed this data 
model in order to predict the next value of the Ichnos. 
The class Observable is a variable that is 
incorporated in Ichnos and expresses the physical 
(location information) or conceptual (mobility 
pattern) behavior of the Ichnos. The value range of 
the Observable is specified by a Derivable, which in 
turn, is independent of any Observable contained into 
a certain Ichnos.  
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 Fig. 1. UML Profile for Predictive Context Object 
 

B.   Mathematical Formulation 
 

By representing this model through a 
mathematical formulation, we accept that the 
classifier Observable obs has as domain of definition 
any contextual variable and as value range the set 
Vobs ∈ ℜn. The classifier Derivable drv may have as 
an input field any contextual variable whose value 
will determine the obs’s value range. This means 
that: 

∃ dependent: Vobs × Vdrv  {true,false},  
∀ obs ∈ Observable ∧∀ drv ∈ Derivable  
The dependent function maps to logic (Boolean) 

values. This describes that the values of an obs 
depend on the current value of the drv. If dependent 
(obs,drv) = true, ∀ (obs,drv) ∈ {Vobs × Vdrv} then the 
Vobs is specified by the Vdrv. Let us define 

predictionobs(drv) as the prediction of the value of the 
obs if the following Boolean statement holds: 

 
 (dependent(obs,drv) = true) 
∧ (∃ predictionobs: Derivable  Vobs

predicted ⊆ Vobs) 
 
Applying predictionobs(drv) to an obs, aggregated 

to an Ichnos and bound to an Entity, we could predict 
the Entity’s future behaviour or contextual state. In 
order to be able to deduct an Entity’s future 
contextual behaviour, we firstly need to define the 
notion of Ichnos. Let us define Ichnos as the 
following set: 

 
Ichnos = {Observable o ∪ Derivable w |  
(∧i dependent(i,w) = true) ∧  
(∃ predictioni(w) ∈ Vi

predicted ⊆ Vi )∧ 
(∨i dependent(i,j) = false), ∀i,j ∈ Observable, i≠j  
∧ w is unique} 
 
In other words, Ichnos is a set of Observables and 

a Derivable such that there is no dependency between 
the Observables but there is dependency connecting 
the Observables to the given, unique Derivable.   

A context history Qe, associated to an entity e, is 
defined as a set of Ichne. Each Ichnos maintains the 
contextual information of the e, for a specific 
Derivable. Such contextual information is the real 
(captured) information, not the predicted. If we 
denote Iprd the predicted Ichnos for the entity e, and 
Icpr the captured Ichnos for the same entity, then the 
Qe, is the set {(Icpr, ∆) p }, where p is the history 
window length (i.e., past context values contributing 
to the prediction of new) and ∆ is an n-dimensional 
vector, denoting the estimated error for the value of 
the kth Observable inside the Ichnos, 
(k=1..#Observables).  Qe is periodically updated with 
a new Ichnos is added to its container. When we 
correlate context histories Qent associated to ent 
entities we might take advantage of the Ichnes’ 
semantic function, in order to predict and infer 
unknown context for the contained context residing 
into every context history.  

 
III. APPLICATION ON SPATIAL CONTEXT 

 
By modelling predictive contextual information 

with the PCO concept, we could focus on the context 
that maintains spatial information (spatial context as 
User context). Let us define the Longitude and 
Latitude instances of the Observable classifier. We 
consider that such instances are independent with 
regard to their value ranges (i.e., 
dependent(Longitude, Latitude) = false). Consider the 
derivable time t, which specifies the value range of 



every instance (dependent(Longitude, t) = true). An 
Ichnos object is constructed by the aforementioned 
observables. Such an Ichnos maintains the spatial 
context of an entity. We employ an interpolation 
algorithm i.e. Cubic Bezier Splines [7], which 
interpolates time with Longitude and Latitude 
respectively. Finally, the Ichnos PlanarLocation = 
{{Longitude, Latitude}, {time}} is defined. This 
maintains the planar context of the bound entity.  

We have tried to demonstrate spatial context 
prediction through simulation. Our domain of interest 
- the input - will be a GPS trace file. The scenario is 
quite simple: A user equipped with a GPS-enabled 
mobile device is driving around a certain 
neighbourhood of our city for an extensive time 
period. We collect the trace that his/her device 
provides - this is how the input file is produced. As 
the user is moving, his/her new position information 
is updated every second and we try to predict his/her 
future location(s) each time. The trace is formulated 
according to the GPS specifications and comprises of 
consecutive rows of data that determine the user’s 
position (PlanarLocation Predictive Context) on the 
earth at approximately 1-second intervals. 

We chose to implement our prediction mechanism 
with three different interpolation methods. These are 
Newton’s Divided Differences, Lagrange’s 
Interpolation [7] and Cubic Bezier Splines. Their 
original domain of application is to try to calculate an 
estimate of a function’s value (e.g. y=f(x)) when only 
some of its values are available, within a given range 
of the parameter x. We expand their usage beyond 
this restrictive range of x. According to our model, y 
may be related to Observable Longitude and x to the 
Derivable of y. For instance, when the following 
pairs of (x,y) are known: {(x1,y1), (x2,y2),...(xn,yn)} 
one can get an estimate of yi=f(xi), x1<xi<xn, using 
interpolation methods, without knowing the function 
f. We will utilize such pairs in order to get estimates 
for xi>xn. This actually means that we will try to 
predict the user’s future location based on his/her 
past locations. 

The first two methods (Newton’s and Lagrange’s) 
proved inappropriate for this purpose, as they induce 
significant errors, due to their inherent oscillatory 
behaviour, when the amount of (x,y) pairs increases. 
This was confirmed by our simulation results. On the 
other hand, Cubic Bezier Splines proved quite 
promising, as will be demonstrated below, while 
being extremely efficient in terms of complexity – 
O(n), where n is the length of the history window. 

There were two major issues that our simulation 
tried to investigate. The first was the amount of 
knowledge (context history) that should be used by 
the system so as to be able to make reliable 
estimations. That is the actual number of (x,y) pairs 

used every time by the method to yield a prediction. 
Let us call it Qu (context history for user entity). 
Should Qu be large? In other words, should our 
system “remember” many past user locations before 
trying to predict the future ones? The question 
concerning Qu is not primarily whether big Qu’s 
would require extremely large execution time, but 
also how it affects the prediction’s error. 

The second one was the capability of our system 
to predict deeply into the future. Given a set of past 
locations, how many seconds in the future could it 
provide predictions that bear acceptable errors? If we 
know where the user was at t1, t2, t3, t4, is it possible 
to estimate where they will be at t = tcurrent+K with 
K>1? 

The question now becomes “what is the most 
efficient combination of Qu (knowledge of the past) 
and K (future depth) that gives the least errors?”. For 
this, we progressed our simulation by investigating 
the performance of the algorithm for large value 
ranges of Qu and K. The algorithm used is illustrated, 
in pseudocode, in Fig. 2 and appears graphically in 
Fig. 3. 

 
counter = 0;
while(user_is_moving) {

get_current_location;
if (counter < Q) {

wait_for_more_user_locations;
} else if (counter < Q+K) {

calculate_Kth_user_location_from_now;
} else {

calculate_error_in_current_prediction;
calculate_Kth_user_location_from_now;

}
counter = counter + 1;

}  
Fig. 2. Algorithm for predicting the Kth Ichnos for 

history window length Q 

Fig. 3. Graphical representation of the Q+K 
prediction 

 



The results of the simulation are presented in Fig. 
4. In the x-axis one can see the values of Qu length. 
The y-axis represents the Mean Error Percentage 
(MEP) of the user’s future location estimations for 
the first 4 values of K. As MEP we define the mean 
value of the per cent ratio (xpr-xrl)/xpr where xpr is the 
predicted and xrl is the real (captured) value of the x 
variable. The observed error increases as one tries to 
predict deeper into the future. It is notable, though, 
that the MEP of the estimations lies far beneath 1% 
for values of K=1, 2, 3, 4. This means that Cubic 
Splines enabled us to predict the user’s future spatial 
context with relatively good accuracy.  

What is also remarkable is the fact that the MEP 
does not decline as Qu length grows. This means that 
no matter how large our knowledge base was (the 
user’s past locations that we take under consideration 
for the prediction), the MEP remained almost the 
same! Consequently, a quite short Qu would be 
adequate for fast and reliable prediction attempts. 
Therefore, the value of the Qu and the specific depth 
K could be introduced to the PlanarLocation Ichnos 
extending its definition with the dependent(Qu,K) = 
true. This means that Qu produces the least MEP for 
certain range of K. For constant Qu length, the MEP 
value is increasing as the K value increases. This is 
the Computing context, which feeds the Predictive 
context with the appropriate information in order to 
predict the user’s location. 

 

 
Fig. 4. Mean error percentage related to Q for certain 

K values (simulation for GPS) 

For reasons of generality and diversity in our study 
of the PCO we also performed our simulation with 
another type of location Ichne. The source came from 
IBM’s City Simulator [16]. The results of the 
simulation can be seen in Fig. 5.  

 

 
Fig. 5. Mean error percentage related to Q for certain 

K values (simulation for City Simulator) 

It is noticeable that in the case of the City 
Simulator the simulation produced errors varying 
from 2% to 5% for values of K=1, 2. However, such 
values of K refer to predictions 15 seconds and 30 
seconds into the future respectively. For predictions 
of up to 30 seconds into the future, the MEP 
remained below 10%. This is rather an important 
inference regarding a city plan. We assume that the 
dependent(Longitude,Latitude)=false, which means 
that the value of the Longitude is independent with 
the value of the Latitude. If 
dependent(Longitude,Latitude)=true, which means 
that the value of the Longitude is dependent with the 
value of the Latitude and we meet such relation in a 
city plan, then we could use a 3D Bezier Splines and 
the Ichnos classifier has to be extended in order to 
support such dependency.  

At this point one should stress the contrast of 
using mathematical methods, such as Cubic Splines, 
in order to implement predictive algorithms, instead 
of statistical and/or probabilistic methods like 
ProbInitial and ProbUpdate algorithm in [14] and 
Path Prediction Algorithm in [13]. The errors 
introduced by mathematical methods can be analysed 
and estimated through exhaustive simulations for 
various data and parameters, thus generating concrete 
knowledge of their behaviour and how they could be 
exploited. 

On the contrary, the statistical probabilistic 
methods introduce errors that render such methods 
useful only under certain circumstances. One has the 
option to decide what is more functional for their 
intended use: the estimation that a certain context 
parameter might have Value_1, for example, with a% 
probability or the knowledge that this parameter has 
Value_1 ± e% error. We propose the PCO in 
combination with a mathematical prediction 
algorithm (Cubic Splines) so as to facilitate context 
aware applications with a reliable predictive model. 

 



IV. EXTENSION MECHANISM  
A.   Dependency Inference Operator over Ichnos 

 
Using this model we were capable of retrieving 

contextual information from other already predicted 
contextual information. An extension mechanism of 
this model is based on how to exploit predicted 
knowledge in order to determine the Observable’s 
value. We can define operators between Ichne over 
their semantic functions. We define the operator 
Dependency Inference (DI) between two Ichne I1 and 
I2 related to specific derivable I1.drv and I2.drv 
respectively, as a new Ichnos for which the following 
statements and constraints hold: 

 
{Ichnos I | dependent (I2.obs, I1.drv) = true  
∧ (I.obs = I2.obs) 
∧ (I.drv = I1.drv)} 
 
The I1 and I2 Ichne are not necessarily bound to 

the same Entity, whilst the I2.drv is semantically 
interrelated with I1.obs. We call the following 
function a Dependency Inference (DI), 

DI: Ichnos × Ichnos  Ichnos 
To make this mapping feasible I1.obs and I2.drv 

must be of the same type. This constraint, expressed 
in OCL [8], is listed below: 

 
context Entity  inv:  
self.semanticConstraint[relativeEntity]. 
target.oclIsKindOf(self.bindsTo.semantic 
(self.semanticConstraint[entity].source).type) 

 
Let us envisage that we are interested in the user’s 

planar location and the terminal’s available 
bandwidth. The planar location and the bandwidth 
are instances of Ichnos. We can predict the future 
planar location value (i.e., the future longitude and 
latitude of the user). The Ichnos LocBand = 
{{Bandwidth}, {Longitude}} describes the 
contextual information of the terminal’s available 
Bandwidth regarding its Longitude value (Physical 
context for the terminal). So, the dependent 
(Bandwidth, Longitude) = true. Let us suppose that 
there exists a semantic function between the user and 
the terminal entity (e.g. user nearTo terminal), 
regarding their Observable Longitude. Then, we 
could predict the terminal’s Bandwidth through the 
user’s Longitude if we consider that 
terminal.Bandwidth’s Derivable (in this case the 
Longitude) is semantic(user.Longitude), as the result 
of the semantic function (e.g. Euclidian distance 
between user and terminal is above a specified 
threshold that means that user is indeed nearTo 
terminal). The Derivable of the user’s Longitude is 

time. Now, we can infer that the Derivable of the 
Bandwidth is time. This means that:  
dependent(Bandwidth,Longitude)= 
dependent(Bandwidth,semantic(Longitude))= 
dependent(Bandwidth,time) = true 

We can predict the future value of the Bandwidth 
from the time because of the interrelated behavior of 
Bandwidth’s entity (terminal) with the Longitude’s 
entity (user) and the fact that LocBand’s Derivable is 
PlaneLocation’s Observable. The LocBand context is 
then a Predictive Context because one can exploit it 
in order to predict the values of its Observables.  
Using the DI function, we do not only achieve new 
predictive context but we can also use it in order to 
transform and merge the context from one kind to 
another. In this case, the user’s context is merged to 
the terminal’s physical context for prediction 
purposes. This merging technique is employed if and 
only if there exists a semantic association between 
the involved entities.  Fig. 7 illustrates three spaces: 
the user’s horizontal movement, the terminal’s 
available bandwidth related to its horizontal location, 
and the nearTo function related to the linear distance 
D of the user and the terminal. When the user’s 
context history Qu intersects with the terminal’s 
context history Qt over the Observable Longitude and 
their Euclidean distance D ≤ Dthreshold then the DI 
operator is applied in order to predict the terminal’s 
available bandwidth for certain K time depth. Dthreshold 
indicates the piece of contextual information that the 
user relates with the specific terminal (user is near to 
this terminal). If D is systematically higher to the 
Dthreshold then it could be deduced that the user uses 
this terminal and the user’s movement determines the 
terminal’s available bandwidth.   

time
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time

D =  |User’s Longitude -Terminal’s Longitude|
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Fig. 7 .The use of DI operator nearTo for further 
prediction 

 
B.   Ontological expression of Ichnos 

 
We can model and express the semantic function 

of the Ichnos as an instance of the meta-association 



relatesWith. Such an instance could be expressed in a 
Semantic Web Language, such as OWL [9], which 
resolves interoperability issues among heterogeneous 
ubiquitous systems. According to our data model we 
can apply the DI operator over the semantic function 
to set of Ichne, contained into a Qe. Applying such an 
operator will enrich the context awareness in terms of 
inference, by capturing or predicting contextual 
information previously unspecified. Fig. 8 depicts an 
OWL graph with the relationships among Ichne and 
Entities for the aforementioned example. 
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Fig. 8. Ontology representation of the PCO 
 

V. FUTURE WORK 
 

In this paper, we proposed a context prediction 
algorithm related to interpolation mechanism. We 
also defined a UML Profile for modelling Predictive 
Context Objects that generate the notion of the 
Predictive context. Such context includes any 
information associated with any variant whose value 
we want to predict. This variant, called Observable is 
time-dependent. The Predictive context may be 
merged into well-defined contexts (Physical, User, 
and Computing). Through the combination of several 
context values, we may generate a more powerful 
understanding of the current situation of an entity. 
Current contexts (capturing information up to now) 
act as indices into other sources of contextual 
information. By integrating such information with its 
Predictive context, we can implement proactive 
procedures for an application. For example, by 
knowing the current location and current time, 
together with the user’s calendar, and by estimating 
the future location, the application will predict of the 
user’s future social situation, such as having a 
meeting, waiting in the airport, and so on. The PCO 

model is defined as a “ground” model that may build 
more complex type of Predictive context variants by 
using the notion of a semantic function as specified 
into Ichnos classifier. The total error, etotal, of the 
spatial context prediction may be considered as a 
complex Ichnos. Such an Ichnos relates to the error 
on longitude, elong, and the error on latitude, elati, and 
defines a semantic function between such errors as 
the vector etotal = [elong , elati]. Our future work is based 
on how to introduce more semantics and merging 
techniques into Ichnos classifier for modelling 
complex data types that represent the Predictive 
context. Moreover, we intend to improve the 
prediction algorithms that we have used so far 
(namely Cubic Splines) bearing in mind facts like 
user direction and velocity vectors for spatial context.  
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